
Che-Wei Chang

chewei@mail.cgu.edu.tw

Department of Computer Science and Information

Engineering, Chang Gung University

mailto:chewei@mail.cgu.edu.tw

2
© All Rights Reserved, Prof. Che-Wei Chang, Department of Computer Science and Information

Engineering, Chang Gung University

● System Initialization and Memory Management

● Power Management Techniques and System Routine

● Embedded Linux Labs and Exercises on Android

● Embedded System Design Concepts

● Embedded System Developing Tools and Operating Systems

● Embedded Linux and Android Environment

● Real-Time System Design and Scheduling Algorithms

● System Synchronization Protocols

4
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Studying: 2 days per 4 days

Playing Basketball: 1.5 days per 3 days

 Case 1: Studying is always more important

0 1 2 3 4 5 6

 Case 2: Doing whatever is more urgent

0 1 2 3 4 5 6

 Can we find an optimal scheduler that always produces

a feasible schedule whenever it is possible to do so?

◦ What does optimality means?

 Can we find a quick schedulability test for a set of

processes?

◦ Is it simple and accurate?

 How do we model scheduling overheads, such as the

cost of context switching?

5
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Processes are independent

 Processes are all periodic

 The deadline of a request is its next request time

 A scheduler consists of a priority assignment policy and

a priority-driven scheduling mechanism

6
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Reference: C.L. Liu and James. W. Layland, “Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment,” JACM, Vol. 20, No.1, January 1973, pp. 46-61

 The response time of a request for a process is the time span

between the request and the end of the response to that request

 A critical instant of a process is an instant at which a request of

that process has the longest response time

 A critical interval for a process is the time interval between the

start of a critical instant and the deadline of the corresponding

request of the process

A critical instant for any process occurs whenever the process is

requested simultaneously with requests for all higher priority processes

7
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

An observation: If a process can complete its execution

within its critical interval, it is schedulable at all time!

8
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A static priority is assigned to each task based on the inverse
of its period
◦ A task with shorter period higher priority

◦ A task with longer period lower priority

◦ For example:

 P1 has its period 50 and execution time 20

 P2 has its period 100 and execution time 37

P1 is assigned a higher priority than P2

 The rate monotonic (RM) priority assignment assigns

processes priorities according to their request rates

◦ If a feasible fixed priority assignment exists for some process set, then

the rate monotonic priority assignment is feasible for that process set

9
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Proof. Exchange the priorities of two tasks if their priorities are out of RMS order.

Period: 10

Priority: 1

Period: 23

Priority: 2

Period: 15

Priority: 3

Task A Task B Task C

If it is feasible

Period: 10

Priority: 1

Period: 23

Priority: 3

Period: 15

Priority: 2

Task A Task BTask C

RM must be feasible

The optimal fixed priority assignment

 Dynamic priorities are assigned according to deadlines

◦ The earlier the deadline, the higher the priority

◦ The later the deadline, the lower the priority

◦ For example:

 P1 has its period 50 and execution time 25

 P2 has its period 80 and execution time 35

10
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Earliest Deadline First

Meet Deadline

 For a task ti with the period Pi and the execution time Ci,

the utilization Ui of ti is defined as Ui =
Ci

Pi

 For a real-time task set T the total utilization of the task set
is σti∈𝐓

Ui

 If σti∈𝐓
Ui ≤ 69%, Rate Monotonic Scheduling can schedule all

tasks in T to meet all deadlines
◦ More precisely, for n tasks, the i-th task can meet deadline if

 If and only if σti∈𝐓
Ui ≤ 100%, Earliest Deadline First Scheduling

can schedule all tasks in T to meet all deadlines

11
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Reference: C.L. Liu and James. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,”

JACM, Vol. 20, No.1, January 1973, pp. 46-61

 12U /1

1

i

i
i

j

i

 For a given priority assignment, a process set fully

utilizes the processor if the priority assignment is feasible

for the set and if any increase in the run time of any

processes in the set will make the priority assignment

infeasible
◦ EDF: 100% fully utilize, <100% not fully utilize

◦ RM:

12
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Feasible schedules without CPU full utilization

Feasible schedules with CPU full utilization

Infeasible schedules

 The achievable utilization factor of the EDF
algorithm is 100%.The EDF algorithm is an optimal
dynamic priority scheduling policy in the sense that a
process set is schedulable if its CPU utilization is no
larger than 100%.

 The achievable utilization factor of the RM algorithm
is about ln2 (~69%). The RM algorithm is an optimal
fixed priority scheduling policy in the sense that if a
process set is schedulable by some fixed priority
scheduling algorithm, then it is schedulable by the
RM algorithm.

13
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 For a set of m processes with the RM fixed priority

order, the i-th process is schedulable if

 For a set of m processes with the EDF scheduling, all

process will miss deadlines when the total utilization

is more than 100%

14
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 12 /1

1

i
i

j

i
p

c

j

j

 Context Switching
◦ Needed either when a process is preempted by another process,

or when a process completes its execution

◦ Stack Discipline

If process A preempts process B, process A must

complete before process B can resume

If it is obeyed, charge the cost of preemption (context
switching cost) once to the preempting process!

15
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

A

B

B BA

 The least slack time algorithm (LST), which assigns processes
priorities inversely proportional to their slack times is also optimal if
context switching cost can be ignored
◦ The slack time of a process is d(t) - t - c(t)

 t: current time

 d(t): deadline

 c(t): remaining execution time

◦ An example
 The time t = 0

 Two task have the same deadline 20

 Task 1 has c(t) = 7, and task 2 has c(t) = 8

16
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

Task 2 Task 1

So many context switches!

 Processes might share non-preemptible resources or

have precedence constraints

 Papers for discussion:

◦ L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority Inheritance

Protocols: An Approach to Real-Time Synchronization,” IEEE

Transactions on Computers, 1990.

◦ A.K. Mok, “The Design of Real-Time Programming Systems

Based on Process Models,” IEEE Real-Time Systems

Symposium, Dec 1994.

18
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Motivation

◦ Can we find an efficient way to analyze the schedulability of a

process set (systematically)

◦ What kinds of restrictions on the use of communication

primitives are needed so as to efficiently solve the restricted

scheduling problem

◦ How can we control the priority inversion problem

◦ The lengths of critical sections might be quite different

19
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Blocking: a higher-priority process is forced to wait for

the execution of a lower-priority process

 Preemption: a low-priority process is forced to wait for

the execution of a high-priority process

20
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

τ1

τ3

lock S unlock S

lock S lock S

Blocked !

Preempted!

 When there are a lot of tasks having priority between

that of τ1 and τ3, there are a lot of priority inversions

21
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

τ1

τ3

lock S unlock S

lock S lock S

τ2,1

τ2,2

τ2,3

Preemption!?

 Priority-Driven Scheduling
◦ The process which has the highest priority among the ready

processes is assigned the processor

 Synchronization
◦ Process τi must obtain the lock on the semaphore guarding a

critical section before τi enters the critical section
◦ If τi obtains the required lock, τi enters the corresponding critical

section; otherwise, τi is blocked and said to be blocked by the
process holds the lock on the corresponding semaphore

◦ Once τi exits a critical section, τi unlocks the corresponding
semaphore and makes its blocked processes ready

 Priority Inheritance
◦ If a process τi blocks higher priority processes, τi inherits the

highest priority of the process blocked by τi

◦ Priority inheritance is transitive

22
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 No priority inversion

 A semaphore S can be used to cause inheritance

blocking to task J only if S is accessed by a task

which has a priority lower than that of J and might be

accessed by a task which has a priority equal to or

higher than that of J.

23
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

S

S

τ3
S

τ2

τ1

lock S

 A chain of blocking is possible

 A deadlock can be formed

24
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

τ3 S1

τ2 S2

τ1

Request S2

Request S1

τ1

τ2τ3

 The priority ceiling of a semaphore is the priority of the

highest priority task that may lock the semaphore

 The Basic Priority Inheritance Protocol + Priority

Ceiling

 A task J may successfully lock a semaphore S if S is

available, and the priority of J is higher than the highest

priority ceiling of all semaphores currently locked by

tasks other than J

 Priority inheritance is transitive

25
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

26
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

t1

Time
t2

S2

blocked by τ2

(attempt to lock S1)

S1, S2

t2

S2

t
4

priority inheritance

unlock S2 and reset priority

S1 S1, S2

t0

t3

S0

S2 S2

t5 t6t1

S1

t7 t8

S0 locked S0 unlocked

S2 locked

S1 locked S1 unlocked

S2 locked S2 unlocked

S1 locked S1 unlocked

t0

27
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

t0

t1

Time
t2

S1 S1

t2

S1

t4

Avoidance blocking occurs!

S2

S2 S1, S2

t6

S1, S2 S1, S2

t1t0 t3 t5 t7 t8

S2

blocked by τ2

(attempt to lock S2)

S2 locked S2 unlocked

blocked by τ2

(attempt to lock S2)

S2 locked S2 unlocked

S1 locked S1 unlocked

S1 locked S2 locked S2 unlocked S1 unlocked

 The priority ceiling protocol prevents transitive blockings

 The priority ceiling protocol prevents deadlock

 No job can be blocked for more than one critical section of
any lower priority job

 A set of n periodic tasks under the priority ceiling protocol
can be scheduled by the rate monotonic algorithm if the
following conditions are satisfied:

where Bi is the worst-case blocking time for ti, and each
task will be blocked on once in a period

28
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

,i ,1 ni ,12 /1
1

1

i

i

ii
i

j j

j
i

p

Bc

p

c

Task t1: C1=20, P1=100, U1=0.2

Task t2: C2=40, P2=150, U2=0.267

Task t3: C3=100, P3=350, U3=0.286

 Total utilization: 75.3% ≤ 3 2
1

3 − 1 = 77.9%

 24.7% of the CPU is usable for lower-priority

background computation

30
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

Task t1: C1=40, P1=100, U1=0.4

Task t2: C2=40, P2=150, U2=0.267

Task t3: C3=100, P3=350, U3=0.286

 The utilization of the first two tasks: 66.7% ≤ 2 2
1

2 − 1 = 82.8%

 The total utilization:95.3% > 3 2
1

3 − 1 = 77.9%

31
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A RMA Example:
◦ t1(20,100), t2(30,150), t3(80, 210), t4(100,400)

◦ t1
 c1 <= 100

◦ t2

 c1 + c2 <= 100 or

 2c1 + c2 <= 150

◦ t3

 c1 + c2 + c3 <= 100 or

 2c1 + c2 + c3 <= 150 or

 2c1 + 2c2 + c3 <= 200 or

 3c1 + 2c2 + c3 <= 210

◦ t4

 c1 + c2 + c3 + c4 <= 100 or

 2c1 + c2 + c3 + c4 <= 150 or

 …

32
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

50 100 150 200

50

100

150

200

 A RMA Example with blocking time:
◦ t1(20,100), t2(30,150), t3(80, 210), t4(100,400)

◦ t1: (S1, 5)

◦ t2: (S2, 15)

◦ t3: (S1, 10), (S3, 5)

◦ t4: (S2, 5), (S3, 20)

 What is the priority ceiling of each semaphore?
◦ S1: t1, S2: t2, S3: t3

 When PCP is adopted (block once), what is the
blocking time of each task?
◦ t1: 10, t2: 10, t3: 20, t4: 0

33
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A RMA Example with blocking time:
◦ For each task, we have to consider the execution time, period, and

blocking time
◦ t1(20,100,10), t2(30,150,10), t3(80, 210,20), t4(100,400,0)
◦ t1

 b1 + c1 <= 100

◦ t2

 b2 + c1 + c2 <= 100 or

 b2 + 2c1 + c2 <= 150

◦ t3

 b3 + c1 + c2 + c3 <= 100 or

 b3 + 2c1 + c2 + c3 <= 150 or

 b3 + 2c1 + 2c2 + c3 <= 200 or

 b3 + 3c1 + 2c2 + c3 <= 210

◦ t4

 …

34
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Aperiodic tasks run at irregular intervals

 Aperiodic deadlines

◦ Hard deadline: minimum inter-arrival time

◦ Soft deadline: best average response time

 Services such as

◦ User requests

◦ Device interrupts

◦ …

36
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 Polling Server~ Average Response Time = 50 units

 Interrupt Server ~ Average Response Time = 1 unit

37
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

100 200 300

65 98 6

100 200 300

 Polling Server: the average response time is long

 Interrupt Server: the computing time of aperiodic tasks

is difficult to limited

 Deferrable Server

◦ In each period, a deferrable server has a execution budget

◦ When execution budget is used up, server execution drops to a

lower (background) priority

38
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

100 200 300

 Deferrable Server might consume two times of the

execution budget in short time

 Sporadic Server

◦ Replenishment occurs one “period” after the start of usage

39
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

100 200 300

100 200 300

100

 A sporadic server differs from a deferrable server in its

replenishment policy:

◦ A 100 ms deferrable server replenishes its execution budget

every 100 ms, no matter when the execution budget is used

◦ The affect of a sporadic server on lower priority tasks is no

worse than a periodic task with the same period and execution

time

40
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

 A sporadic server has a replenishment period 5 and an

execution budget 2

 Each event consumes the execution 1

 Events arrive at 1, 3, 4, 8, 9

41
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

0 5 10 15

1

2Execution

Budget

Time

 For a sporadic server has a replenishment period X and
an execution budget Y
◦ Given a set of sporadic tasks, If

 Each of the aperiodic tasks has its minimum inter-arrival time no
less than X

 The total execution of the task set is no more than Y

◦ All sporadic tasks can meet the deadline constraints

 When a system consists of periodic tasks and sporadic
servers
◦ A sporadic server with replenishment period X and an

execution budget Y can be consider as a periodic task with a
period X and an execution time Y

◦ The system can then use analysis scheme of RM or EDF

42
© All Rights Reserved, Prof. Che-Wei Chang,

Department of Computer Science and Information Engineering, Chang Gung University

