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● System Initialization and Memory Management

● Power Management Techniques and System Routine

● Embedded Linux Labs and Exercises on Android

● Embedded System Design Concepts

● Embedded System Developing Tools and Operating Systems

● Embedded Linux and Android Environment

● Real-Time System Design and Scheduling Algorithms

● System Synchronization Protocols
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 Studying: 2 days per 4 days

Playing Basketball: 1.5 days per 3 days

 Case 1: Studying is always more important

0        1        2        3        4        5        6

 Case 2: Doing whatever is more urgent

0        1        2        3        4        5        6



 Can we find an optimal scheduler that always produces 

a feasible schedule whenever it is possible to do so?

◦ What does optimality means?

 Can we find a quick schedulability test for a set of 

processes? 

◦ Is it simple and accurate?

 How do we model scheduling overheads, such as the 

cost of context switching?
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 Processes are independent

 Processes are all periodic

 The deadline of a request is its next request time

 A scheduler consists of a priority assignment policy and 

a priority-driven scheduling mechanism
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Reference: C.L. Liu and James. W. Layland, “Scheduling Algorithms for Multiprogramming in a 

Hard Real-Time Environment,” JACM, Vol. 20, No.1, January 1973, pp. 46-61



 The response time of a request for a process is the time span 

between the request and the end of the response to that request

 A critical instant of a process is an instant at which a request of 

that process has the longest response time

 A critical interval for a process is the time interval between the 

start of a critical instant and the deadline of the corresponding 

request of the process

A critical instant for any process occurs whenever the process is 

requested simultaneously with requests for all higher priority processes
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An observation: If a process can complete its execution 

within its critical interval, it is schedulable at all time!
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 A static priority is assigned to each task based on the inverse 
of its period
◦ A task with shorter period  higher priority

◦ A task with longer period  lower priority

◦ For example: 

 P1 has its period 50 and execution time 20

 P2 has its period 100 and execution time 37

P1 is assigned a higher priority than P2



 The rate monotonic (RM) priority assignment assigns 

processes priorities according to their request rates

◦ If a feasible fixed priority assignment exists for some process set, then 

the rate monotonic priority assignment is feasible for that process set
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Proof. Exchange the priorities of two tasks if their priorities are out of RMS order.

Period: 10

Priority: 1

Period: 23

Priority: 2

Period: 15

Priority: 3

Task A Task B Task C

If it is feasible

Period: 10

Priority: 1

Period: 23

Priority: 3

Period: 15

Priority: 2

Task A Task BTask C

RM must be feasible

The optimal fixed priority assignment



 Dynamic priorities are assigned according to deadlines

◦ The earlier the deadline, the higher the priority

◦ The later the deadline, the lower the priority

◦ For example: 

 P1 has its period 50 and execution time 25

 P2 has its period 80 and execution time 35
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Earliest Deadline First

Meet Deadline



 For a task ti with the period Pi and the execution time Ci, 

the utilization Ui of ti is defined as Ui =
Ci

Pi

 For a real-time task set T the total utilization of the task set 
is σti∈𝐓

Ui

 If σti∈𝐓
Ui ≤ 69%, Rate Monotonic Scheduling can schedule all 

tasks in T to meet all deadlines
◦ More precisely, for n tasks, the i-th task can meet deadline if

 If and only if σti∈𝐓
Ui ≤ 100%, Earliest Deadline First Scheduling 

can schedule all tasks in T to meet all deadlines
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 For a given priority assignment, a process set fully 

utilizes the processor if the priority assignment is feasible 

for the set and if any increase in the run time of any 

processes in the set will make the priority assignment 

infeasible
◦ EDF: 100%  fully utilize,  <100%  not fully utilize

◦ RM: 
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Feasible schedules without CPU full utilization

Feasible schedules with CPU full utilization

Infeasible schedules



 The achievable utilization factor of the EDF 
algorithm is 100%.The EDF algorithm is an optimal 
dynamic priority scheduling policy in the sense that a 
process set is schedulable if its CPU utilization is no 
larger than 100%.

 The achievable utilization factor of the RM algorithm
is about ln2 (~69%). The RM algorithm is an optimal 
fixed priority scheduling policy in the sense that if a 
process set is schedulable by some fixed priority 
scheduling algorithm, then it is schedulable by the 
RM algorithm.
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 For a set of m processes with the RM fixed priority 

order, the i-th process is schedulable if 

 For a set of m processes with the EDF scheduling, all 

process will miss deadlines when the total utilization 

is more than 100%
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 Context Switching
◦ Needed either when a process is preempted by another process, 

or when a process completes its execution

◦ Stack Discipline

If process A preempts process B, process A must 

complete before process B can resume

If it is obeyed, charge the cost of preemption (context  
switching cost) once to the preempting process!
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 The least slack time algorithm (LST), which assigns processes 
priorities inversely proportional to their slack times is also optimal if 
context switching cost can be ignored
◦ The slack time of a process is d(t) - t - c(t)

 t: current time

 d(t): deadline 

 c(t): remaining execution time

◦ An example
 The time t = 0

 Two task have the same deadline 20

 Task 1 has c(t) = 7, and task 2 has c(t) = 8 
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Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

Task 2 Task 1

So many context switches!





 Processes might share non-preemptible resources or 

have precedence constraints

 Papers for discussion:

◦ L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority Inheritance 

Protocols: An Approach to Real-Time Synchronization,” IEEE 

Transactions on Computers, 1990.

◦ A.K. Mok, “The Design of Real-Time Programming Systems 

Based on Process Models,” IEEE Real-Time Systems 

Symposium, Dec 1994.
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 Motivation

◦ Can we find an efficient way to analyze the schedulability of a 

process set (systematically) 

◦ What kinds of restrictions on the use of communication 

primitives are needed so as to efficiently solve the restricted 

scheduling problem

◦ How can we control the priority inversion problem

◦ The lengths of critical sections might be quite different
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 Blocking: a higher-priority process is forced to wait for 

the execution of a lower-priority process

 Preemption: a low-priority process is forced to wait for 

the execution of a high-priority process
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τ1

τ3

lock S unlock S

lock S lock S

Blocked !

Preempted!



 When there are a lot of tasks having priority between 

that of τ1 and τ3, there are a lot of priority inversions
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τ1

τ3

lock S unlock S

lock S lock S

τ2,1

τ2,2

τ2,3

Preemption!?



 Priority-Driven Scheduling
◦ The process which has the highest priority among the ready 

processes is assigned the processor

 Synchronization
◦ Process τi must obtain the lock on the semaphore guarding a 

critical section before τi enters the critical section
◦ If τi obtains the required lock, τi enters the corresponding critical 

section; otherwise, τi is blocked and said to be blocked by the 
process holds the lock on the corresponding semaphore

◦ Once τi exits a critical section, τi unlocks the corresponding 
semaphore and makes its blocked processes ready

 Priority Inheritance
◦ If a process τi blocks higher priority processes, τi inherits the 

highest priority of the process blocked by τi

◦ Priority inheritance is transitive
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 No priority inversion

 A semaphore S can be used to cause inheritance 

blocking to task J only if S is accessed by a task 

which has a priority lower than that of J and might be 

accessed by a task which has a priority equal to or 

higher than that of J.
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S

S

τ3
S

τ2

τ1

lock S



 A chain of blocking is possible

 A deadlock can be formed
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τ3 S1

τ2 S2

τ1

Request S2

Request S1

τ1

τ2τ3



 The priority ceiling of a semaphore is the priority of the 

highest priority task that may lock the semaphore

 The Basic Priority Inheritance Protocol + Priority 

Ceiling

 A task J may successfully lock a semaphore S if S is 

available, and the priority of J is higher than the highest 

priority ceiling of all semaphores currently locked by 

tasks other than J

 Priority inheritance is transitive
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t1

Time
t2

S2

blocked by τ2

(attempt to lock S1)

S1, S2

t2

S2

t
4

priority inheritance

unlock S2 and reset priority

S1 S1, S2

t0

t3

S0

S2 S2

t5 t6t1

S1

t7 t8

S0 locked S0 unlocked

S2 locked

S1 locked S1 unlocked

S2 locked S2 unlocked

S1 locked S1 unlocked

t0
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t0

t1

Time
t2

S1 S1

t2

S1

t4

Avoidance blocking occurs!

S2

S2 S1, S2

t6

S1, S2 S1, S2

t1t0 t3 t5 t7 t8

S2

blocked by τ2

(attempt to lock S2)

S2 locked S2 unlocked

blocked by τ2

(attempt to lock S2)

S2 locked S2 unlocked

S1 locked S1 unlocked

S1 locked S2 locked S2 unlocked S1 unlocked



 The priority ceiling protocol prevents transitive blockings

 The priority ceiling protocol prevents deadlock

 No job can be blocked for more than one critical section of 
any lower priority job

 A set of n periodic tasks under the priority ceiling protocol 
can be scheduled by the rate monotonic algorithm if the 
following conditions are satisfied:

where Bi is the worst-case blocking time for ti, and each 
task will be blocked on once in a period
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Task t1: C1=20, P1=100, U1=0.2 

Task t2: C2=40, P2=150, U2=0.267 

Task t3: C3=100, P3=350, U3=0.286

 Total utilization: 75.3% ≤ 3 2
1

3 − 1 = 77.9%

 24.7% of the CPU is usable for lower-priority 

background computation
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Task t1: C1=40, P1=100, U1=0.4

Task t2: C2=40, P2=150, U2=0.267 

Task t3: C3=100, P3=350, U3=0.286

 The utilization of the first two tasks: 66.7% ≤ 2 2
1

2 − 1 = 82.8%

 The total utilization:95.3% > 3 2
1

3 − 1 = 77.9%
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 A RMA Example:
◦ t1(20,100), t2(30,150), t3(80, 210), t4(100,400)

◦ t1
 c1 <= 100

◦ t2

 c1 + c2 <= 100  or

 2c1 + c2 <= 150

◦ t3

 c1 + c2 + c3 <= 100  or

 2c1 + c2 + c3 <= 150  or

 2c1 + 2c2 + c3 <= 200 or

 3c1 + 2c2 + c3 <= 210

◦ t4

 c1 + c2 + c3 + c4 <= 100 or

 2c1 + c2 + c3 + c4 <= 150 or

 …
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 A RMA Example with blocking time:
◦ t1(20,100), t2(30,150), t3(80, 210), t4(100,400)

◦ t1: (S1, 5)

◦ t2: (S2, 15)

◦ t3: (S1, 10), (S3, 5)

◦ t4: (S2, 5), (S3, 20)

 What is the priority ceiling of each semaphore?
◦ S1: t1,   S2: t2,  S3: t3 

 When PCP is adopted (block once), what is the 
blocking time of each task?
◦ t1: 10, t2: 10, t3: 20, t4: 0
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 A RMA Example with blocking time:
◦ For each task, we have to consider the execution time, period, and 

blocking time
◦ t1(20,100,10), t2(30,150,10), t3(80, 210,20), t4(100,400,0)
◦ t1

 b1 + c1 <= 100

◦ t2

 b2 + c1 + c2 <= 100  or

 b2 + 2c1 + c2 <= 150

◦ t3

 b3 + c1 + c2 + c3 <= 100  or

 b3  + 2c1 + c2 + c3 <= 150  or

 b3 + 2c1 + 2c2 + c3 <= 200 or

 b3 + 3c1 + 2c2 + c3 <= 210

◦ t4

 …
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 Aperiodic tasks run at irregular intervals

 Aperiodic deadlines

◦ Hard deadline: minimum inter-arrival time

◦ Soft deadline: best average response time

 Services such as

◦ User requests

◦ Device interrupts

◦ …
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 Polling Server~ Average Response Time = 50 units

 Interrupt Server ~ Average Response Time = 1 unit
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 Polling Server: the average response time is long

 Interrupt Server: the computing time of aperiodic tasks 

is difficult to limited

 Deferrable Server

◦ In each period, a deferrable server has a execution budget

◦ When execution budget is used up, server execution drops to a 

lower (background) priority
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 Deferrable Server might consume two times of the 

execution budget in short time

 Sporadic Server 

◦ Replenishment occurs one “period” after the start of usage
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 A sporadic server differs from a deferrable server in its 

replenishment policy:

◦ A 100 ms deferrable server replenishes its execution budget 

every 100 ms, no matter when the execution budget is used

◦ The affect of a sporadic server on lower priority tasks is no 

worse than a periodic task with the same period and execution 

time
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 A sporadic server has a replenishment period 5 and an 

execution budget 2

 Each event consumes the execution 1

 Events arrive at 1, 3, 4, 8, 9 
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 For a sporadic server has a replenishment period X and 
an execution budget Y
◦ Given a set of sporadic tasks, If 

 Each of the aperiodic tasks has its minimum inter-arrival time  no 
less than X

 The total execution of the task set is no more than Y

◦ All sporadic tasks can meet the deadline constraints

 When a system consists of periodic tasks and sporadic 
servers
◦ A sporadic server with replenishment period X and an 

execution budget Y can be consider as a periodic task with a 
period X and an execution time Y

◦ The system can then use analysis scheme of RM or EDF 
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